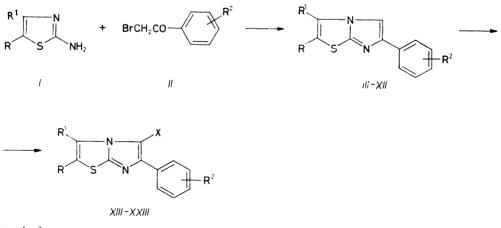
HERBICIDAL ACTIVITY OF 5-HALOIMIDAZO[2,1-b]THIAZOLES


Aldo ANDREANI*, Mirella RAMBALDI and Alessandra LOCATELLI Dipartimento di Scienze Farmaceutiche, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy

> Received August 24, 1990 Accepted May 5, 1991

Dedicated to Dr Miroslav Protiva on the occasion of his 70th birthday.

A series of 5-haloimidazo[2,1-b]thiazoles, related to 5-bromo-6-phenylimidazo[2,1-b]thiazole XIII, was prepared and tested for their herbicidal activity against seven species of plants.

A few years ago we had the opportunity of preparing 5-bromo-6-phenylimidazo-[2,1-b]thiazole XIII (Scheme 1) as an intermediate for the synthesis of imidazo-[2,1-b]thiazoles with potential antitumor activity. The synthetic procedure was reported in the literature¹ but to our knowledge reports on the biological activity had not been published, so we sent a sample to FMC, agricultural chemical group (Princeton, NJ), for screening. The significant herbicidal activity shown by this

R, R¹, R², X see Table I

SCHEME 1

2430

	F	lu	n.2	>	Starting		Formula	J. ~ M	Calc	Calculated/Found	puno
Compound	×	,X	Y	<	material	Kelerence	(M.w.)	M.P., C	%с	Н%	N %
IIIX	Н	н	Н	Br	III	7	C ₁₁ H ₇ BrN ₂ S (279-2)			ref. ¹	
XIV	Н	Н	Н	G	III	7	$C_{11}H_7CIN_2S$ (234·7)	96—100 ^b	56·28 56·56	3-01 3-03	11-94 12-03
XV	C	Н	Н	Br	IV	£	C ₁₁ H ₆ BrClN ₂ S (313·6)	124—125	42·12 41·80	1-93 1-85	8-93 8-72
IAX	CH ₃	Н	Н	Br	7	1	C ₁₂ H ₉ BrN ₂ S (293·2)			ref. ¹	
ΙΙΛΧ	Н	CH ₃	Н	Br	И	4	C ₁₂ H ₉ BrN ₂ S (293·2)			ref. ¹	
IIIAX	CH ₃	CH ₃	Н	Br	ШЛ	S	C ₁₃ H ₁₁ BrN ₂ S (307·2)	184—186 dec.	50-82 50-86	3·61 3·56	9-12 8-84
XIX	Н	Н	2-Cl	Br	111/	a	C ₁₁ H ₆ BrClN ₂ S (313·6)	123-124	42·12 42·21	1-93 1-99	8-93 9-15
XX	Н	Н	4-Br	Br	XI	1	C ₁₁ H ₆ Br ₂ N ₂ S (358·1)	157160	36·89 37·12	1·69 1·69	7-82 7-64
IXX	Н	Н	2,4-Cl ₂	Br	X	9	C ₁₁ H ₅ BrCl ₂ N ₂ S (348·1)	172—175	37-96 38-26	1-45 1-53	8-05 8-25
IIXX	Н	Н	4-0CH ₃	Br	IX	٢	C ₁₂ H ₉ BrN ₂ OS (309·2)	77—80	46-61 46-38	2-93 2-98	9-06 9-10
IIIXX	Н	Н	4-NO ₂	Br	IIX	œ	C ₁₁ H ₆ BrN ₃ O ₂ S (324·2)			ref. ⁹	

TABLE I

Collect. Czech. Chem. Commun. (Vol. 56) (1991)

2431

compound, prompted us to prepare a number of analogs in order to evaluate the effect of different substituents at the positions 2, 3, 5, 6. In compound XIV chlorine is present in place of bromine; compounds XV-XVIII have substituents at position 2, 3 and finally compounds XIX-XXIII bear a substituted phenyl ring at position 6 (see Table I).

The imidazo[2,1-b]thiazoles III - XII were prepared by reacting 2-aminothiazole I with the appropriate 2-bromo-acetophenone II according to previously reported methods¹⁻⁸. The imidazo[2,1-b]thiazole thus obtained was treated with N-bromo-succinimide (NBS) or with bromine in order to prepare the 5-bromo derivative;

Compound	\tilde{v}_{max}, cm^{-1}	δ^a , ppm				
XIII	1 540, 845, 757, 635	7.50 d, 1 H (th, $J = 4.4$); 7.50 m, 3 H (ar); 7.95 d, 1 H (th, $J = 4.4$); 8.0 m, 2 H (ar)				
XIV	1 545, 1 150, 760, 650	7.50 d, 1 H (th, $J = 4.4$); 7.50 m, 3 H (ar); 7.95 d, 1 H (th, $J = 4.4$); 8.0 m, 2 H (ar)				
XV	1 117, 1 012, 758, 687	7.45 m, 3 H (ar); 7.98 m, 2 H (ar); 8.32 s, 1 H (th)				
XVI	1 605, 1 115, 760, 682	2.43 d, 3 H (CH ₃ , $J = 1.4$); 7.45 m, 3 H (ar); 7.68 q, 1 H (th, $J = 1.4$); 8.0 m, 2 H (ar)				
XVII	1 050, 763, 721, 679	2.63 d, 3 H (CH ₃ , $J = 1.4$); 7.0 q, 1 H (th, $J = 1.4$); 7.45 m, 3 H (ar); 7.95 m, 2 H (ar)				
XVIII	1 600, 1 121, 760, 685	2·30 s, 3 H (CH ₃); 2·56 s, 3 H (CH ₃); 7·45 m, 3 H (ar); 7·95 m, 2 H (ar)				
XIX	1 320, 970, 760, 642	7.49 d, 1 H (th, $J = 4.4$); 7.52 m, 4 H (ar); 7.90 d, 1 H (th, $J = 4.4$)				
XX	1 325, 823, 705, 662	7·48 d, 1 H (th, $J = 4.4$); 7·70 d, 2 H (ar, $J = 9$); 7·90 d, 1 H (th, $J = 4.4$); 7·95 d, 2 H (ar, $J = 9$)				
XXI	1 325, 1 119, 972, 642	7.54 d, 1 H (th, $J = 4.4$); 7.60 m, 2 H (ar); 7.80 m, 1 H (ar); 8.0 d, 1 H (th, $J = 4.4$)				
XXII	1 300, 1 130 1 100, 1 020	3.80 s, 3 H (OCH ₃); 7.04 d, 2 H (ar, $J = 9$); 7.45 d, 1 H (th, $J = 4.4$); 7.88 d, 1 H (th, $J = 4.4$); 7.90 d, 2 H (ar, $J = 9$)				
XXIII	1 595, 1 505, 1 340, 1 160	7.80 d, 1 H (th, $J = 4.4$); 8.06 d, 1 H (th, $J = 4.4$); 8.13 d, 2 H (ar, $J = 9$); 8.60 d, 2 H (ar, $J = 9$)				

TABLE II IR and ¹H NMR data of compounds XIII - XXIII

^a J given in Hz; th thiazole, ar aromatics.

Collect. Czech. Chem. Commun. (Vol. 56) (1991)

in one trial experiment the yield was better with bromine than with NBS, so we chose to use bromine to synthesize compounds XV-XXIII. On the other hand we found the 5-chloro derivative XIV easier to prepare with N-chlorosuccinimide (NCS) instead of chlorine. The spectroscopic data of compounds XIII-XXIII agree with the assigned structures (see Table II).

The herbicidal activity of the compounds XIII - XXIII against seven different species of plants is reported in Table III. The substitution of bromine in position 5 by chlorine (XIV) as well as the introduction of a second halogen at the 2-position (XV) brings no significant differences in comparison to the activity of the parent compound XIII. On the contrary, the introduction of a methyl group in position 2 or 3 gives rise to a complete loss of activity. As far as the substituent in the phenyl ring is concerned, the only o-substituted compound (XIX) is quite inactive.

EXPERIMENTAL

Chemistry

The melting points are uncorrected; unless stated otherwise the compounds were crystallized from ethanol. Bakerflex plates (Silica gel IB2-F) were used for TLC, the eluent was a mixture

TABLE III

Herbicidal activity of compounds XIII-XXIII expressed as percent control: preemergence-postemergence

Com- pound	Plant species ^a							
	A	В	С	D	Е	F	G	
XIII	0-70	20-0	0-30	0-30	0-50	0-40	0-30	
XIV	0-30	0 - 20	0-30	0 - 50	0 - 50	0-60	0-90	
XV	0-30	0-30	20 - 30	0 - 30	30-30	0-60	0 - 50	
XVI	0-0	0-0	00	0-0	0-0	0-0	0-0	
XVII	0-0	0 - 0	0-0	0-0	0-0	0-0	0-0	
XVIII	0-0	0-0	0-0	00	0-0	0-20	0-60	
XIX	0-0	0-0	0-0	0-0	0-0	0-0	0-0	
XX	0-0	0 - 10	0 20	0 - 10	0-10	0-50	0-30	
XXI	0-20	0-40	0-20	0-30	0-30	0-50	0-90	
XXII	20 - 10	20-10	30-10	10-20	95- 2 0	0-0	0-20	
XXIII	0 - 10	0-10	0-20	0-0	0-0	0-40	0 - 30	

^a A Soybean (Glycine max.), B Corn (Zea mays), C Wheat (Triticum aestivum), D Morningglory (Ipomoea spp), E Velvetleaf (Abutilon theophrasti), F Barnyardgrass (Echinochloa crus-galli), G Foxtail green (Setaria viridis).

Collect. Czech. Chem. Commun. (Vol. 56) (1991)

of petroleum ether-acetone in various proportions. The IR spectra were recorded in Nujol on a Perkin-Elmer 298 and are given in cm⁻¹. The ¹H NMR spectra were recorded on a Varian EM390 (90 MHz) using TMS as an internal standard and are given in δ ppm. The solvent was deuterated trifluoroacetic acid for compound XXIII and hexadeuteriodimethyl sulfoxide for all the others.

6(2-Chlorophenyl)imidazo[2,1-b]thiazole (VIII)

o-Chloroacetophenone (10.8 g, 70 mmol) was dissolved in CHCl₃ and treated dropwise, under stirring at $0-5^{\circ}$ C, with the equivalent of bromine dissolved in CHCl₃ (10 ml). The reaction mixture was then maintained at room temperature for 30 min and evaporated under reduced pressure. The resulting oil (crude 2-bromo-o-chloroacetophenone) was reacted, without further purification, with 2-aminothiazole (7 g, 70 mmol) dissolved in acetone (100 ml). The mixture was refluxed for 20 min and the resulting precipitate was collected, washed with acetone and refluxed for 1 h with 300 ml of 2M-HBr. Before cooling, the solution was cautiously treated under stirring with 15% NH₄OH until basic. The precipitate of 6(2-chlorophenyl)imidazo-[2,1-b]thiazole VIII was collected and crystallized with a yield of 50%; m.p. 88–90°C (ethanol). IR spectrum: 1 195, 1 030, 757, 641. ¹H NMR spectrum: 7.30 d, 1 H (th, J = 4.5); 7.45 m, 3 H (ar); 8.0 d, 1 H (th, J = 4.5); 8.20 m, 1 H (ar); 8.43 s, 1 H (H-5). For C₁₁H₇ClN₂S (234.7) calculated: 56.29% C, 3.01% H, 11.94% N; found: 56.65% C, 2.99% H, 12.14% N.

5-Chloro-6-phenylimidazo[2,1-b]thiazole (XIV)

6-Phenylimidazo[2,1-b]thiazole (III, ref.²) (15 mmol) was dissolved in 100 ml of CHCl₃ and treated with 18 mmol of NCS. The reaction mixture was refluxed for 10 min, washed with 10% Na_2CO_3 and dried over Na_2SO_4 . The solvent was removed under reduced pressure and the residue was crystallized with a yield of 60% (see Tables I, II).

5-Bromo-6-phenylimidazo[2,1-b]thiazoles XV-XXIII

The starting compounds III - XII (refs¹⁻⁸) (10 mmol) were dissolved in CHCl₃ (50 ml) and treated dropwise, under stirring and cooling (10-15°C), with a solution of bromine (10 mmol) in CHCl₃ (5 ml). The resulting salt was collected, washed with CHCl₃ and stirred for 2 h at room temperature with 150 ml of 0.5M-NaOH. The precipitate thus formed was collected, washed with water and crystallized (see Tables I, II), with an approximate yield, calculated on the starting compound, of 45% (XVIII, XXII), 75% (XV, XIX, XXI) and 90% (XX).

Biology

Compounds XIII - XXIII were tested against seven species at an application rate of 8 kg/ha with two procedures (see Table III):

a) Preemergence: seeds were planted and the soil was sprayed with a solution of the compound under test. Results were recorded 10-14 days after the treatment and are reported as percent control, so the effect may be absent (0), slight (10-30), moderate (40-60), severe (70-90) or complete (100).

b) Postemergence: a solution of the compound under test was sprayed onto 10-14 day old plants. After additional 10-14 days, results were recorded as in the preemergence test.

We are grateful to FMC (Princeton, NJ) for the evaluation of the herbicidal activity.

Collect. Czech. Chem. Commun. (Vol. 56) (1991)

REFERENCES

- 1. Pyl T., Giebelmann R., Beyer H.: Justus Liebigs Ann. Chem. 643, 145 (1961).
- 2. Kickhöfen B., Kröhnke F.: Chem. Ber. 88, 1109 (1955).
- 3. Werbel L. M., Zamora M. L.: J. Heterocycl. Chem. 2, 287 (1965).
- 4. Kondo H., Nagasawa F.: J. Pharm. Soc. Jpn. 57, 1050 (1937); Chem. Abstr. 32, 3398 (1938).
- 5. Kochergin P. M., Shchukina M. N.: Zh. Obshch. Khim. 26, 458 (1956); Chem. Abstr. 50, 13883b (1956).
- 6. Andreani A., Rambaldi M., Andreani F., Bossa R., Galatulas I.: Eur. J. Med. Chem. 23, 385 (1988).
- 7. Pyl T., Bülling L., Wünsch K., Beyer H.: Justus Liebigs Ann. Chem. 643, 153 (1961).
- 8. Matsukawa T., Ban S.: J. Pharm. Soc. Jpn. 71, 756 (1951); Chem. Abstr. 46, 8094b (1952).
- 9. Saldabols N., Lando O. E.: Khim. Geterotsikl. Soedin. 1978, 258; Chem. Abstr. 88, 190733d (1978).